题意:
给你一个格式为hh:mm:ss的时间,问:该时间时针与分针、时针与秒针、分针与秒针之间夹角的度数是多少。
若夹角度数不是整数,则输出最简分数形式A/B,即A与B互质。
解析:
先计算出总的秒数 S=hh∗3600+mm∗60+ss
由于秒钟每秒走1°,
所以当前时间,秒钟与12点的度数为 S%360由于分针每秒走 0.1°,
既然已经计算出总秒数,那么当前时间,分针与12点的度数为 S/10%360由于时针每秒走(1/120)°。那么当前时间。时针与12点的度数为 S/120%360
然后计算出几个角度之间的绝对值。
又由于题目要求的是劣角,所以推断一下当前求出的角度的绝对值是否大于180°。 假设大于180°,就把当前角度减去180°。
注意:
每行末尾另一个空格,没有输出会PE。
my code
#include#include #include using namespace std;typedef __int64 type;struct Frac { type a, b; Frac() {a = 0; b = 1;} Frac(type a) { this->a = a; b = 1; } Frac(type a, type b) { this->a = a; this->b = b; deal();} void init() {a = 0; b = 1;} type gcd(type a, type b) { while (b) { type tmp = a % b; a = b; b = tmp; } return a; } void deal() { type d = gcd(a, b); a /= d; b /= d; if (b < 0) { a = -a; b = -b; } } Frac operator + (Frac c) { Frac ans; ans.a = a * c.b + b * c.a; ans.b = b * c.b; ans.deal(); return ans; } Frac operator - (Frac c) { Frac ans; ans.a = a * c.b - b * c.a; ans.b = b * c.b; ans.deal(); return ans; } Frac operator * (Frac c) { Frac ans; ans.a = a * c.a; ans.b = b * c.b; ans.deal(); return ans; } Frac operator / (Frac c) { Frac ans; ans.a = a * c.b; ans.b = b * c.a; ans.deal(); return ans; } Frac operator % (Frac c) { Frac ans; ans.b = b * c.b; ans.a = a * c.b % (c.a * b); ans.deal(); return ans; } void absolute() { if (a < 0) a = -a; if (b < 0) b = -b; } void operator += (Frac c) {*this = *this + c;} void operator -= (Frac c) {*this = *this - c;} void operator *= (Frac c) {*this = *this * c;} void operator /= (Frac c) {*this = *this / c;} bool operator > (Frac c) { return a * c.b > b * c.a;} bool operator == (Frac c) { return a * c.b == b * c.a;} bool operator < (Frac c) { return !(*this < c && *this == c);} bool operator >= (Frac c) { return !(*this < c);} bool operator <= (Frac c) { return !(*this > c);} bool operator != (Frac c) { return !(*this == c);} bool operator != (type c) { return *this != Frac(c, 1);} void operator = (type c) { this->a = c; this->b = 1;} void put() { if (a == 0) printf("0"); else { if (b == 1) printf("%I64d", a); else printf("%I64d/%I64d", a, b); } }};int t;type hh, mm, ss;int main() { scanf("%d", &t); while (t--) { scanf("%I64d:%I64d:%I64d", &hh, &mm, &ss); type S = hh * 3600 + mm * 60 + ss; Frac s = Frac((S * 6) % 360); Frac m = Frac(S, 10); Frac h = Frac(S, 120); m = m % Frac(360); h = h % Frac(360); Frac a1 = (h - m); Frac a2 = (h - s); Frac a3 = (m - s); a1.absolute(); a2.absolute(); a3.absolute(); if (a1 > Frac(180)) a1 = Frac(360) - a1; if (a2 > Frac(180)) a2 = Frac(360) - a2; if (a3 > Frac(180)) a3 = Frac(360) - a3; a1.put(); printf(" "); a2.put(); printf(" "); a3.put(); printf(" \n"); } return 0;}